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NO-Hur:
A good footprint is worth a
million crowns
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«the worst of times, ...»

New tower position and height acknowledged by ETC April 2019

Start bidding round April 2019

End bidding round June 2019, winner: ELV Jarlsg AS

Contract signed September 2019

Expected delivery: February 2020

Accumulation of excuses I: no subcontractor found, road construction not part
of the contract, building allowance from Hurdal missing, bad weather, ...
Tower material ordered and arrived at ELV Jarlsg AS in March 2020
Accumulation of excuses Il: Corona, subcontractors, summer holidays, ...,
very long response times / manager unreachable

Responsible manager (was?) retired October 9th



The Hurdal tower building project N\],BIO
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«..., the best of times»

* Meeting with new manager October 12t
* Binding timetable delivered October 16t

 Weekly meetings every Friday

Byggeseknad 43

Solil test

Rydde skog D

Lage vei [ rydde plass Med kabel rgr

Grave grop

Byegge fundament

Stgpe fundament Med telt

Fylle og klargjgre plassen Legge til rette for
for strgm m.m.

Prefabrikere monduler

Frakte seksjoner kigre opp 20g 2

Montasje

 Tower up and running end of January 2021?77



Our «pilot» EC system at Hoxmark
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Distance from the tower (m)

Hoxmark footprint:
could hardly be better!
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5-day mean temperature (*C)
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Time series of NEE, GPP and R.c,

Hoxmark
time series
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Hoxmark fingerprints
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Reduction in NEP in 2018 in the North

|COS stations in Sweden, Finland and Denmark NON-ICOS station Hoxmark
Carbon balance from Hoxmark 2018-2019
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Impact comparison: 2003, 2010 and 2018

ol s Reference period: 1979 - 2018
20 Stippling: <5% or >95%
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: 2003, 2010 and 2018

Impact comparison

 Soil moisture
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Impacts: aboveground biomass changes

Anomalies in 2018 above ground biomass inferred from L-VOD and by vegetation models

Z-scores
Z-scores

Bastos et al. Sci. Adv. (2020)
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Regional asymmetries
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Combining remote sensing earth observations and
in situ networks for the detection of extreme events

1. Definition and identification of “ecosystem extreme events” with remote sensing
2. The role of existing measurement networks (Fluxnet, ICOS) for extreme events

3. Conclusions

Partially based on:
Mahecha et al. (2017): Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14(18), 4255.
Sippel et al. (2018): Drought, Heat, and the Carbon Cycle: a Review. Current Climate Change Reports 4, 266-286.



What are extreme events (in ecosystem productivity)?

* Focus is on losses in carbon / productivity (anomalies, deviations from the long-term behavior)

* Use proxies from remote sensing, e.g.
Fraction of Absorbed Photosynthetic Active Radiation (FAPAR)

Method to find extreme events

* Estimate mean seasonal cycles (MSCs) at each grid cell

* PCA of the MSCs -> phenologically similar regions

* |dentify these regions based on binned PCA scores
(image: first three PCs coded as RGB)

* Choose a small guantile (q=0.025) and require
contiguous spatiotemporal extremes (within a spatial
search radius and a prescribed time window)

* Determine the corresponding anomaly in Fapar
(region-specific anomaly threshold)

-0.25 -0.2 -0.15 -0.1 -0.05
Threshold for FAPAR anomalies



What are extreme events in ecosystem productivity?

* Each extreme event consists in a set of “3D” voxels

(2 spatial x 1 time dim.)

e Search radius has to be defined, e.g. 5 km x 16 days

* Events are defined as “detected” if
at least one site “sees” them

Characteristics of extreme events:
» Affected area
* Duration
* Event size = affected area x duration
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* Total impact = integral of the anomaly across the event size

* Rank the extreme events according to total impact



Affected Area [km?]
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Number of events
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Real measurement networks: ICOS, Fluxnet and random sample NIBIO
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Real measurement networks: ICOS, Fluxnet and random sample NIBIO
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Real measurement networks: ICOS, Fluxnet and random sample
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Number Detected

Real measurement networks: ICOS ES and Fluxnet in Europe
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ICOS ES (61 sites) detects more extremes than
FLUXNET (64 sites)

A random placement of ICOS ES sites would
provide much better detectability

Augmenting existing ICOS ES sites with the same
amount of random ones further improves
detection



Real measurement networks: ICOS ES+AS and Fluxnet in Europe

Number Detected
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ICOS ES+AS (84 sites) is much better than
FLUXNET for smaller extremes
Randomization leads to almost 100%
detection of the 30 largest extremes
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Conclusion: “ecosystem extremes” and monitoring networks

 Remote sensing provides proxies to quantify ecosystem extremes relevant for the
(terrestrial) carbon cycle

 Observation networks constitute a crucial tool towards detection of them

e Detection probabilities of “3D” extreme events exhibit power-law type scaling
with network size

* A systematically clustered network design may be suboptimal due to the spatial
irregularity of extreme events

* |COS would benefit substantially from additional sites, especially in Spain,
Southeast Europe and Western Russia

* Here, no conclusion possible for the boreal (FAPAR not a suitable proxy there)
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