This list provides an overview of all publications that have made use of the data produced onboard Nuka Arctica, both for dedicated studies and as part of the global data compilation SOCAT.
Peer reviewed articles
Friedlingstein, P. et al. (2022c), Supplement data of the Global Carbon Budget 2022, ICOS-ERIC Carbon Portal [data set], https://doi.org/10.18160/GCP-2022, 2022b.
Friedlingstein, P. et al. (2022b), Global Carbon Budget 2022, Earth System Science Data, 14: 4811–4900, doi.org/10.5194/essd-14-4811-2022.
Friedlingstein, P. et al. (2022a), Global Carbon Budget 2021, Earth System Science Data, 14: 1917–2005, doi.org/10.5194/essd-14-1917-2022.
Becker, M. et al. (2021), The northern European shelf as increasing net sink for CO2, Biogeosciences, doi.org/10.5194/bg-18-1127-2021.
Friedlingstein, P. et al. (2020), Global Carbon Budget 2020, Earth System Science Data, 12, 3269–3340, doi.org/10.5194/essd-12-3269-2020.
Kitidis, V. et al. (2019), Winter weather controls net influx of atmospheric CO2 on the north west European shelf, Scientific Reports, doi.org/10.1038/s41598-019-56363-5.
Omar, A.M. et al. (2019), Trends of Ocean Acidification and pCO2 in the Northern North Sea, 2003-2015, JGR Biogeosciences, 124, doi.org/10.1029/2018JG004992.
Friedlingstein, P. et al. (2019), Global Carbon Budget 2019, Earth System Science Data, 11, 1783–1838, doi.org/10.5194/essd-11-1783-2019.
Ciavatta et al. (2018). Assimilation of ocean-color plankton functional types to improve marine ecosystem simulations. Journal of Geophysical Research Oceans, 123(2), 834‑854. doi:10.1002/2017JC013490.
Denvil-Sommer et al. (2018), FFNN-LSCE: A two-step neural network model for the reconstruction of surface ocean pCO2 over the GlobalOcean. Geoscientific Model Development Discussions, 1‑27. doi:10.5194/gmd‑2018‑247.
Fassbender et al. (2018), Seasonal Asymmetry in the Evolution of Surface Ocean pCO2 and pH Thermodynamic Drivers and the Influence on Sea-Air CO2 Flux. Global Biogeochemical Cycles, 32(10), 1476‑1497. doi:10.1029/2017GB005855.
Goris et al. (2018), Constraining Projection-Based Estimates of the Future North Atlantic Carbon Uptake. Journal of Climate, 31(10), 3959-3978. doi:10.1175/JCLI-D-17-0564.1 .
Hauck (2018), Unsteady seasons in the sea. Nature Climate Change, 8(2), 97‑98. doi:10.1038/s41558‑018‑0069‑1.
He et al. (2018), A model-based evaluation of the inverse Gaussian transit-time distribution method for inferring anthropogenic carbon storage in the ocean. Journal of Geophysical Research: Oceans, 123(3), 1777‑1800. doi:10.1002/2017JC013504 .
Henson et al. (2018), Controls on open‐ocean North Atlantic ΔpCO2 at seasonal and interannual timescales are different. Geophysical Research Letters, 45. doi:10.1029/2018GL078797.
Kondrik et al. (2018), A synthetic satellite dataset of E. huxleyi spatio-temporal distributions and their impacts on Arctic and Subarctic marine environments(1998‑2016). Earth System Science Data Discussions, 1‑17. doi:10.5194/essd‑2018‑101.
Landschützer et al. (2018), Strengthening seasonal marine CO₂variations due to increasing atmospheric CO₂. Nature Climate Change, 8, 146‑150. doi:10.1038/s41558-017-0057-x.
Laruelle et al. (2018), Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Communications, 9, 454. doi:10.1038/s41467‑017‑02738‑z.
Le Quéré, C. et al. (2018), Global Carbon Budget 2018. Earth System Science Data, 10(4), 2141‑2194. doi:10.5194/essd‑10‑2141‑2018.
Le Quéré, C. et al. (2018), Global Carbon Budget 2017. Earth System Science Data, 10, 405‑448. doi:10.5194/essd-10-405-2018.
Li and Ilyina (2018), Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophysical Research Letters, 45, 916‑925. doi:10.1002/2017GL075370.
Pereira et al. (2018), Reduced air-sea CO₂ flux in the Atlantic ocean due to surfactants. Nature Geoscience. doi:10.1038/s41561-018-0136-2.
Racapé et al. (2018), Transport and storage of anthropogenic C in the North Atlantic Subpolar Ocean. Biogeosciences, 15(14), 4661‑4682. doi:10.5194/bg‑15‑4661‑2018.
Rödenbeck et al. (2018), Data-based estimates of the ocean carbon sink variability – First results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences, 12(23), 7251‑7278. doi:10.5194/bg‑12‑7251‑2015.
Rödenbeck et al. (2018), How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO₂ data. Biogeosciences, 15, 2481‑2498. doi:10.5194/bg-15-2481-2018.
Roobaert et al. (2018), Uncertainty in the global oceanic CO₂ uptake induced by wind forcing: quantification and spatial analysis. Biogeosciences, 15, 1701‑1720. doi:10.5194/bg-15-1701-2018.
Skogen,M. et al. (2018), Future ecosystem changes in the Northeast Atlantic: a comparison between a global and a regional model system. ICES Journal of Marine Science, 75(7), 2355‑2369. doi:10.1093/icesjms/fsy088.
Yasunaka et al. (2018), Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO₂ flux incorporating chlorophyll a concentrations. Biogeosciences,15, 1643-1661. doi:10.5194/bg-15-1643-2018.
Bakker, D.C.E. et al. (2016), A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8: 383-413. doi:10.5194/essd-8-383-2016.
Ciavatta, S. et al. (2016), Decadal reanalysis of biogeochemical indicators and fluxes in the North West European shelf-sea ecosystem. Journal of Geophysical Research - Oceans, 121: 1824-1845, doi:10.1002/2015JC011496.
Couldrey, M.P. et al. (2016), On which timescales do gas transfer control North Atlantic CO2 flux variability?, Global Biogeochemical Cycles, 30, 16 pp. doi:10.1002/2015GB005267.
Landschützer, P. et al. (2016), Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30: 1-22. doi:10.1002/2015GB00535.
Li, H. et al. (2016), Decadal predictions of the North Atlantic CO2 uptake. Nature Communications, 7: 11076, 7 pp. doi:10.1038/ncomms11076.
McKinley, G.A. et al. (2016), Timescales for detection of trends in the ocean carbon sink. Nature, 530: 469-472. doi:10.1038/nature16958.
Alory, G. et al. (2015), The French contribution to the voluntary observing ships network of sea surface salinity. Deep-Sea Research Part I, 105: 1-18. doi:10.1016/j.dsr.2015.08.005.
Jones, S.D. et al. (2015), A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data, Journal of Advances in Modelling Earth systems, 7: 1554-1575, doi:10.1002/2014MS000416.
Lauvset, S.K. et al. (2015), Trends and drivers in global surface ocean pH over the past 3 decades, Biogeosciences, 12: 1285-1298, doi:10.5194/bg-12-1285-2015.
Le Quéré, C. et al., (2015), Global Carbon Budget 2015. Earth System Science Data 7: 349-396. doi:10.5194/essd-7-349-2015.
Le Quéré, C. et al. (2015), Global Carbon Budget 2014. Earth System Science Data 7: 47-85, doi:10.5194/essd-7-47-2015.
Zeng, J. et al. (2015), Surface ocean CO2 in 1990-2011 modelled using a feed-forward neural network. Geoscience Data Journal, 2, 47-51. doi: 10.1002/gdj3.26.
Bakker, D.C.E. et al. (2014), An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data, 6: 69-90. doi:10.5194/essd-6-69-2014.
Landschützer, P. et al. (2014), Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles 28: 927-949. doi:10.1002/2014GB004853.
Laurelle, G.G. et al. (2014), Regionalized budget of the CO2 exchange at the air-water interface in continental shelf seas. Global Biogeochemical Cycles, 28:1199-1214. doi:10.1002/2014GB004832.
Le Quéré, C. et al. (2014), Global Carbon Budget 2013. Earth System Science Data 6: 235-263. doi:10.5194/essd-6-235-2014.
Majkut, J.D. et al. (2014), A growing oceanic carbon uptake: Results from an inversion study of surface CO2 data. Global Biogeochemical Cycles, 28: 335-351. doi: 10.1002/2013GB004585.
Rödenbeck, C. et al. (2014), Interannual sea-air flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 11: 4599-4613. doi:10.5194/bg-11-4599-2014.
Takahashi, T. (2014), Climatological distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations, Marine Chemistry, 164: 95-125. doi:10.1016/j.marchem.2014.06.004.
Tjiputra, J.F. et al. (2014), Long-term surface pCO2 trends from observations and models. Tellus B, 66: 23083. doi:10.3402/tellusb.v66.23083.
Woods, S. et al. (2014), Influence of cool skin layer on global air-sea CO2 flux estimates. Remote Sensing of the Environment 145:15-24. doi:10.1016/j.rse.2013.11.023
Zeng, J. et al. (2014), A global surface ocean fCO2 climatology based on a feed-forward neural network. Journal of Atmospheric and Oceanic Technology 31: 1838-1849. doi:10.1175/JTECH-D-13-00137.1
Chen, C.-T. A. et al. (2013), Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10: 6509–6544. doi:10.5194/bg-10-6509-2013.
Landschützer, P. et al. (2013), A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10: 7793-7815. doi:10.5194/bg-10-7793-2013.
Pfeil, B. et al. (2013), A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT), Earth System Science Data, 5: 125-143. doi:10.5194/essd-5-125-2013.
Rödenbeck, C. et al. (2013), Global surface-ocean pCO2 and sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science 9: 193-216. doi:10.5194/os-9-193-2013.
Sabine, C.L. et al. (2013), Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth System Science Data, 5: 145-153. doi:10.5194/essd-5-145-2013.
Schuster, U. (2013), An assessment of the Atlantic and Arctic sea-air-CO2 fluxes, 1990-2009, Biogeosciences, 10, 607-627 doi:10.5194/bg-10-607-2013.
Tjiputra, J.F. et al. (2012), A model study of the seasonal and long–term North Atlantic surface pCO2variability. Biogeosciences, 9: 907-923. doi:10.5194/bg-9-907-2012.
Signorini, S. et al. (2012), The role of phytoplankton dynamics in the seasonal and interannual variability of carbon in the subpolar North Atlantic – A modelling study, Geoscientific Model Development, 5: 683-707, doi:10.5194/gmd-5-683-2012.
Metzl, N. et al. (2010), Recent acceleration of the sea surface fCO2 growth rate in the North Atlantic subpolar gyre (1993-2008) revealed by winter observations, Global Biogeochem. Cycles, GB4004, doi: 10.10292009GB003658.
Omar, A.M., et al (2010), Spatiotemporal variations of fCO2 in the North Sea, Ocean Sci., 6, 77–89, doi:10.5194/os-6-77-2010.
Chierici, M., et al. (2009), Algorithms to estimate the carbon dioxide uptake in the northern North Atlantic using shipboard observations, satellite and ocean analysis data, Deep-Sea Res. II, 65 (2009) 630-639, doi: 10.1016/j.dsr2.2008.12.014.
Pierrot, D. et al. (2009), Recommendations for Autonomous Underway pCO2 Measuring Systems and Data Reduction Routines, Deep-Sea Research II, 56, 512-522. doi: 10.1016/j.dsr2.2008.12.005.
Takahashi, T. et al. (2009), Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep Sea Res. Pt I: Oceanographic Research Papers, Volume 56, 11, 2075-2076, doi: 10.1016/j.dsr2.2008.12.009.
Telzewski, M. et al. (2009), Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network, Biogeosciences, 6: 1405-1421. doi:10.5194/bg-6-1405-2009.
Watson, A.J. et al. (2009), Tracking the variable North Atlantic sink for CO2, Science, 326: 1391-1393. doi:10.1126/science.1177394.
Olsen, A. et al. (2008), Sea-surface CO2 fugacity in the subpolar North Atlantic, Biogeosciences, 5, 535-547, doi:10.5194/bg-5-535-2008.